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ABSTRACT 0

A Study of the performance parameters for a journal bearing of finite

length lubricated with micropolar fluids is undertaken. Results indicate that

a significantly higher load carrying capacity than Newtonian fluids may result

depending on the size of material characteristic length and the coupling

number. It is also shown that although the frictional force associated with

micropolar fluid is in general higher than that of a Newtonian fluid, the

friction coefficient of micropolar fluids tends to be lower than that of the

Newtonian.
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F nondimensional friction force F

h film thickness, m

hcav film thickness at the point of cavitation, m

I nondimensional film thickness = h
c

L bearing length, m

'm nondimensional characteristic length of micropolar fluid :

N coupling number

P hydrodynamic pressure, N/m
2

P nondimensional pressure p )

Q leakage flow rate, m
3/s

nondimensional leakage - 6L 2QcUR 2 i

R journal radius, m

WR component of load along the r flal, N

WR nondimensional load component c- x

pULR
2

WIP component of load along the tangential direction, N

W nondimensional load component = W c2VULR 2

W resultant of load, N

nondimensional load - Wc2
VULR 2

x,y,z coordinate system, m

y nondimensional coordinates =
L

y micropolar viscosity coefficient, N-s

C eccentricity ratio, c = e/c

e nondimensional coordlnate, x/R

2



ecav angular coordinate where the film cavitates

K micropolar viscosity coefficient, N s/m2

A characteristic length of micropolar fluids, m

viscosity of the Newtonian fluid, N s/m2

* function defined in Eq. (4)

I normalized form of 41

attitude angle, rad 6
INTRODUCTION

In recent years there has been a considerable amount of interest in the

lubricating effectiveness of non-Newtonian fluids. Generally speaking, in

non-Newtonian lubricants the shear stresses do not always remain proportional

to the shear rates, particularly for high shear rates. To model such fluids,

various mathematical formulations such as the power law and Ree-Ering models

have been proposed. This paper presents a study of the non-Newtonian behavior

of the lubricating oil (in a finite length journal bearing) from the modern

continuum point of view. In continuum mechanics, the continuous media is

regarded as a set of structured particles possessing individual mass and

velocity. These continuum particles are assigned a sub-structure which can

translate, rotate, or even deform independently. In other words, the

microvolume is considered to have independent microvolume elements that possess

individuality.

Theoretical work dealing with the mechanics of fluids with microstructure

began with the work of Jeffery (Ref. 1) in 1922 who studied the problem of a

Newtonian fluid motion in the presence of suspended ellipsoids. His results

indicated that the viscosity of the fluid with such particles was higher than
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that of its base Newtonian fluid. Later in 1957, Prager (Ref. 2) derived

constitutive equations for stress in a noninteracting (dilute) dumbbell

particle suspension. Since unlike the classical fluid mechanics the

microcontinua is regarded as sets of structured particles, the theory required

a complete re-examination of the classical concepts that has to be augmented

with additional balance laws and constitutive relations.

The general theory of microcontinua is attributed to Eringen who developed

the fluid mechanics of deformable microelements (Ref. 3) in an article entitled

"Simple Microfluids." The Eringen definition of a simple microfluid is a

viscous medium whose behavior and properties are affected by the local motion

of particles in its microvolume. These fluids are characterized by 22

viscosity and material constants and when applied to flow problems the result

is a system of 19 partial differential equations with 19 unknowns that may not

be amenable to solutions. Eringen (Ref. 4) subsequently introduced a subclass

of fluids which he named micropolar fluids that ignores the deformation of the

microelements but still allows for the particle micromotion to take place.

Since then many other papers have appeared in the literature that present

different views of the subject based on the continuum mechanics. A

comprehensive review of these theories is provided by Ariman et al. (Ref. 5).

As for the application of the microcontinuum theory to real flows, the

blood rheology appears to be a very promising area (Refs. 6 and 7). Continuum

approach to blood flow in the arterioles takes the rotation and deformation of

red blood cells into account. Such consideration may be particularly important

because of the relative size of the cells as compared with the diameter of the

arterioles. Another area where microcontinuum theory may be applied is in the

study of rheological behavior of complex microstructures such as liquid

crystals which are known to possess complex molecular structure and orientation

patterns (Ref. 8).
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Microcontinuum theory in general may also be applied to the study of the

non-Newtonian behavior of certain polymer solutions such as polyisobutylene

which are known to have long chains of molecular structure. To study such

fluids, Hand (Ref. 9) put forward a theory of so called anisotropic fluids and

presented theoretical results with comparison to those measured experimentally.

Hand showed that theories due to Jeffery (Ref. 1) and Prager (Ref. 2) are

contained in his anisotropic fluids as special cases and that the theory can

be applied to fluids with microstructure such as polyisobutylene that are

spherical at rest but elongate under shear field as do immiscible drops

suspended in fluids. Comparing results with experimental measurements, Hand

reports good agreement for the dependence of apparent viscosity and normal

stress particularly at low shear rates. His success is indicative of the

potential of applicability of modern continuum theory for non-Newtonian fluids.

Theoretical works on the non-Newtonian bearings from microcontinuum

viewpoint began with the work of Allen and Kline (Ref. 10). They stated that

in addition to polymeric fluids with long molecular chains, the continuum

model can be used, as a first approximation, for modeling bearings that are

contaminated with dirt and particles. Under such conditions, the lubricant

can be considered as a fluid suspension. They studied the one-dimensional

slider bearing problem and concluded that the theory predicts a higher load

capacity and a lower friction coefficient compared to those of a Newtonian

fluid, thereby signifying an improvement in the lubrication of a

one-dimensional bearing lubricant with micropolar fluids.

Since that article was published, many other papers appeared in the

literature that dealt with the lubrication of one-dimensional bearings. To

put things in perspective, the following references can be mentioned: for

slider or step bearings (Refs. 11 to 17), thrust bearings (Refs. 18 and 19),
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journal bearings (Refs. 20 to 25), squeeze film bearings (Refs. 26 to 30),

rolling element and elastohydrodynamic lubrication (Refs. 31 and 32).

Governing Equations

The general form of the governing equations for the steady state motion

of micropolar fluids can be written in tensor notation as follows (Ref. 31).

conservation of mass:

V 7 (pV) = 0 (1)

Conservation of linear momentum:

('2 + 2p) V * - (2p + K) V x V + KV x -u - Vir + pFB = 0 (2)

Conservation of angular momentum:

(a + 1 + y)VV -* - yV x V x v + KV x V - 2iu + pCB = 0 (3)

where V is the velocity vector and u is the microrotational

velocity vector. p is the mass density, it is the thermodynamic pressure, B

FB is the body force per unit mass, LB is the body couple (moment) per unit

mass, p and X are the familiar viscosity coefficients of the classical

fluid mechanics, while ct,,y, and K are additional viscosity coefficients

for micropolar fluids.

Equation (2) has the familiar form of the Navier-Stokes equation but it

is coupled with Eq. (3) which essentially describes the motion of the particles

inside the microvolume as they undergo microrotational effects represented by

the microrotatlonal vector u. For fluids with no microstructure, this

parameter vanishes. For Newtonian fluids, Eqs. (2) and (3) decouple since

- 0. These equations can be simplified considerably for incompressible

fluids (p = constant) in the absence of body forces and inertial forces since
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V * V = 0 and FB and LB are assumed to be negligible. Furthermore, the

thermodynamic pressure ii can be replaced by P since:

a~p-1 =J

where E is the internal energy.

Having made the aformentloned assumptions, a so-called generalized

Reynolds equation for micropolar fluids can be derived, see Ref. 14. The

resulting equation is given below (Ref. 25):

a [ 3  haP api U 8h
axIV 4J(NA~h)Lj] + L 4'(N,A,h) j -

where

I A NA -o h)C(N,A,h) =T- + 2 - -coth (A

The parameter IA is the viscosity of the base fluid as in the case of

Newtonian fluids and K and y are two additional viscosity coefficients for

micropolar fluids. These viscosity parameters are grouped in the form of two

parameters N and A. N is a dimensionless parameter called the coupling

number, for it characterizes the coupling of the linear and angular momentum

equations. When N is identically zero, the equations of linear and angular

momentum are decoupled and the equation of the linear momentum reduces to the

classical Navier-Stokes equation. The parameter A is called the

characteristic length for it characterizes the interaction between the

micropolar fluid and the film gap. This parameter, carrying the dimension of

7

VUW %



length, is a function of the size of the lubricant molecule. As A approaches

zero, the effect of microstructure becomes less important and in the limiting 1;

case, when A vanishes, the function 4) becomes identical to 1/12 and the

Reynolds equation reduces to its classical form.

Nondimensionalization

Let:

m R L c = U R
Then the generalized Reynolds equation for micropolar fluids becomes:

~ ~ ~] (R2  [= 6 (5)
where:

I + 12 22-6N coth(NQ'
m \2I

Boundary conditions are:

P=0 at e 0

0 ate= ea v  (6)

do cay

0 at y = 0 and y= I

where e = eca v  is the angular coordinate at which the film cavitates.

Equation (5) is a fully elliptic partial differential equation for which

no analytical solution exists. Analytical solutions for a number of bearing

configurations are available as cited earlier for either infinitely long

bearings (L/D >> 1) or short bearings (LID << 1). To evaluate the performance

of a bearing for a finite length, one must resort to numerical schemes for

solution. Equation (5) was solved using the finite difference method: the

equation was discretized and the difference equations were solved on a computer

using the Successive-Over-Relaxation method (S.O.R.). Convergence was assumed
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when the relative maximum error between two successive iterations fell below a

tolerance value of 10-3 . The Reynolds cavitation boundary conditions were

satisfied by setting all negative pressures equal to zero during the

computations. Once the pressure distribution was evaluated, the following

performance parameters were computed numerically.

Load capacity and attitude angle:
WRc2 cay

I R ,[I ecav :

R - p cose dO dy (7)
pULR 0 0

W c2  1 e cav

- LR - ]" 2 0 p sine de dy (8)

-c UL 2  2

-- + (9)2 R ppULR2 P,,i'

)(10)
=tan- -WR

Leakage flow rate: 0

Q 6L Q f cay $ h3  Kd(
cUR 2  0 ay (11)

Friction force:

e 21r
c- A d + f A d (12)

where"0 et v  cav >
ecav ca

where:

A = dP 1
2 de + - 2N[cosh(NLh) - ]1

L L ihTfV
Friction coefficient:

.* ,,_

f F =(13)

Equations (7) to (13) were numerically evaluated using a Simpson's integration

scheme.
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RESULTS

To study the lubricating effectiveness of fluids that exhibit

micropolarity, a parametric study was performed. Results are obtained as a

function of two-nondimensional parameters, N and %m which represent the

characteristics of micropolar fluid. Unless otherwise stated, the computations

pertain to a finite journal bearing of L/D = 1.

Pressure Distribution and Load Capacity

Figure 1 presents a number of three-dimensional pressure profiles for a

steadily loaded journal bearing at an eccentricity ratio of c = 0.5.

Figure 1(a) depicts the Newtonian case while Fig. l(b) and (c) show the effect

of micropolar lubricant on the pressure distribution. In Fig. l(b), the

nondimensional characteristic length, %m , was held constant at -m = 9.0 while

the coupling number parameter, N2 , was varied from 0.1 to 0.9. Computations

indicate that although the shape of the pressure distribution remains the same,

the magnitude of the pressure and thus the load capacity varies significantly

as a function of the coupling number. From thermodynamic considerations

parameter N is limited to 0 < N <_ 1, see Eringen (Ref. 3). At high values

of N the effect of microstructures becomes significant whereas at low values

of N the individuality of the substructure is much less pronounced. In the

limiting case, as N approaches zero, the micropolarity is lost and the

lubricant is considered to behave as Newtonian. Under such a limiting case,

the equation of linear momentum reduces to that of the Navier-Stokes.

The effect of the nondimensional characteristic length on the pressure

distribution is depicted in Fig. l(c). As shown, at low %m, the effect of

microstructure is very pronounced. Physically, lower values of Q'm correspond
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to larger values of the characteristic length Um C/A, where c - the bearing

clearance - is assumed to remain constant). Small ,m, therefore, indicates

that characteristic length of the substructure is large compared to that of the

clearance dimension. At high values of Qm, the effect of substructure becomes

less and less significant and in the limiting case when 2m approaches %

infinity, the effect of individuality of the microstructure is lost so that the

pressure distribution approaches that of the Newtonian.

Variation of the load carrying capacity as a function of the

eccentricity ratio, c, Is depicted in Fig. 2 for various values of N, keeping

the nondimensional characteristic length constant, %m = 9, for all cases. The

enhancement in the load capacity for higher values of the coupling number is

pronounced. A possible explanation for such phenomena can be attributed to the

increase in the viscosity due to the additives, characterized by micropolar

fluids. There are some experimental works that support this view. Henniker's

extensive review (Ref. 33) entitled, "The Depth of the Surface Zone of a

Liquid," (Ref. 33) attest to the evidence of abnormally high viscosity in the

vicinity of a solid surface. He refers to some experimental work by Deryagin

et al. (Ref. 34) who found the viscosity of a turbine oil within 5000 A of

solid wall to increase tenfold when aluminum naphthionate of up to 2 percent

were added in.

Figure 3 depicts how the load carrying capacity varies as a function _as

of 2m for a number of N2, keeping the eccentricity constant. It clearly

shows an appreciable rise in the load capacity at small values off Qm and

that the load approaches to that of the Newtonian fluids in the limiting case

as %m +  . These results are consistent with the analytical solutions due to

Cowin (Ref. 35) who showed that for polar fluids in couette flow and Poiseuille

flow the effective viscosity PE approaches the Newtonian fluid value p as

S. rt,



Friction Coefficient

Variation of the coefficient of friction as a function of eccentricity is

shown in Fig. 4 for a number of N2 while 2m = 9.0. Also shown is the

corresponding variation in friction coefficient for the Newtonian fluid case.

This figure indicates that, under the conditions simulated, micropolar fluids

exhibit a beneficial effect in that the coefficient of friction is lower than

the Newtonian fluids. Furthermore, as the coupling number increases, a lower

friction coefficient may result. To further explore this effect, the

coefficient of friction was plotted as a function of the 2m for a number of

N2 as presented in Fig. 5. This figure clearly shows that micropolar friction

coefficient approaches that of Newtonian results as %m + 0 and as Qm + - or

as N2 + 0. The most interesting result is that there exists an optimum

material length at which the friction coefficient is minimum. 0

It should be noted that although the friction coefficient of lubricant

micropolarity tends to be lower than that of the Newtonian fluids, the friction

force tends to be higher as depicted in Fig. 6. The reason for this is of

course due to the load capacity of the micropolar fluids increasing more than

the corresponding increase in (Fig. 3) which more than compensates for the

frictional force. Similar behavior were predicted by analytical work of Allen

and Kline (Ref. 10) for a one-dimensional slider bearing. -. 4

CONCLUDING REMARKS -44

A study of the lubricating effectiveness of micropolar fluids in a

finite journal bearing is presented. Micropolar fluids are a subclass of

microfluids in which the fluids exhibit microrotational effects i.e., the fluid

is considered to possess microstructure that can rotate independently of the

12
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microvolume but the deformation (microstretch) is not allowed. These fluids

have potential in describing the effect of polymeric additives as the classical

Navier-Stokes theory has no provision for the effects of microstructure in

fluids.

The results presented in this paper indicate that for a steadily loaded

finite journal bearing, the micropolar fluids do indeed exhibit a beneficial

effect in that the load carrying capacity is significantly increased and the

friction coefficient is less than that of the Newtonian lubricant.
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FIGURE 1. - PRESSURE DISTRIBUTION FOR NEWTONIAN FLUID AND MICRO-
POLAR FLUID. L/D= 1,E =0.5.
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